

AFRL-IF-RS-TR-2005-21
Interim Technical Report
February 2005

ADVICE AND LEARNING IN PROBLEM SOLVING

Kestrel Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K506

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-21 has been reviewed and is approved for publication

APPROVED: /s/

JAMES M. NAGY
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Acting Chief
Advanced Computing Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2005

3. REPORT TYPE AND DATES COVERED
Interim Aug 03 – Nov 04

4. TITLE AND SUBTITLE
ADVICE AND LEARNING IN PROBLEM SOLVING

6. AUTHOR(S)
Richard Wadinger, Marcel Becker, Alessandro Coglio,
David Cyrluk, Stephen Fitzpatrick, Limei Gilham,
Cordell Green, Douglas Smith, and Stephen Westfold

5. FUNDING NUMBERS
C - F30602-00-C-0209
PE - 62301E
PR - DASA
TA - 00
WU - 05

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Kestrel Institute
3260 Hillview Avenue
Palo Alto California 94304

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFT
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-21

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James M. Nagy/IFT/(315) 330-3173/ James.Nagy@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Respect is an effort to allow a problem solver to accept advice and exhibit learning. It is based on a high-level
description of a problem solver that can be examined and manipulated by the problem-solver itself. Experiments are
being conducted in such problem-solving arenas as meeting scheduling, type checking, and logistics planning. By
specializing a general-purpose problem solver to a declarative problem specification, we obtain a procedure for that
particular problem domain, which is not necessarily efficient. Because the initial problem solver is high-level, the
information is explicitly available as to which operations can be reordered; reordering can lead to radical changes in the
search space. In the meeting scheduling domain, this reordering can ensure that we schedule the scarce resources first
(busy people, popular facilities). We have seen examples in which failed solutions can be examined automatically to
suggest relaxation of constraints---a kind of problem reformulation. For example, if a scheduling problem is unsolvable,
an examination of the search space can suggest that a trip be extended an additional day, or that some participants
work an extra hour. The envisioned system accepts advice as to how to examine the search space.

15. NUMBER OF PAGES
53

14. SUBJECT TERMS
Problem Solving, Learning, Advice, Specware, Theorem Proving, SNARK, Meta-Level
Reasoning, Meeting Scheduling, Type Inference 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS

SUMMARY... 1
INTRODUCTION .. 2
DETAILED DISCUSSION OF THE DERIVATION STRUCTURE: INFERENCE............................ 4
MEETING-SCHEDULING THEORIES... 5
TYPE-INFERENCE THEORY .. 9
RELATED WORK... 10
DISCUSSION.. 11
APPENDIX 1: GENERIC DECLARATIVE REFUTATION THEOREM PROVER 12
APPENDIX 2: DECLARATIVE RESOLUTION THEOREM PROVER.. 14
APPENDIX 3: PROCEDURAL RESOLUTION THEOREM PROVER ... 17
APPENDIX 4: DECLARATIVE SPECIFICATION OF A SIMPLE MEETING-SCHEDULING
PROBLEM.. 21
APPENDIX 5: PROCEDURAL MEETING-SCHEDULING THEORY.. 23
APPENDIX 6: TWO-MEETING SCHEDULING PROBLEM ... 28
APPENDIX 7: SCHEDULING WITH SPACE ... 30
APPENDIX 8: ADVICE ABOUT CONSTRAINT ORDERING... 32
APPENDIX 9: PREFERENCE ADVICE .. 40
APPENDIX 10: OPPORTUNISTIC MEETING SCHEDULING ... 43
APPENDIX 11: LEARNING IN MEETING SCHEDULING ... 45
APPENDIX 12: TYPE-INFERENCE THEORY... 47
REFERENCES ... 49

List of Figures

Figure 1: The Derivation Structure ... 2
Figure 2: The Derivation Structure Revisited... 9

1

Summary

Respect is an effort to allow a problem solver to accept advice and exhibit
learning. It is based on a high-level description of a problem solver that can be
examined and manipulated by the problem-solver itself. Experiments are being
conducted in such problem-solving arenas as meeting scheduling, type checking,
and logistics planning.

By specializing a general-purpose problem solver to a declarative problem
specification, we obtain a procedure for that particular problem domain, which is
not necessarily efficient. Because the initial problem solver is high-level, the
information is explicitly available as to which operations can be reordered;
reordering can lead to radical changes in the search space. In the meeting
scheduling domain, this reordering can ensure that we schedule the scarce
resources first (busy people, popular facilities).
We have seen examples in which failed solutions can be examined automatically
to suggest relaxation of constraints--a kind of problem reformulation. For
example, if a scheduling problem is unsolvable, an examination of the search
space can suggest that a trip be extended an additional day, or that some
participants work an extra hour. The envisioned system accepts advice as to how
to examine the search space.

2

Introduction

Current problem-solving systems, however competent they may be, are rigid in that they
cannot improve their performance through experience and they cannot accept advice
from a knowledgeable consultant. One reason for this is that a problem-solving system
does not have access to the design decisions of its implementer, and hence is not in a
position to alter them. In the Respect project, we envision a problem solver that has
access and control over its entire design history, and hence is in a position to alter itself as
a result of advice or experience. On selected examples, we have shown how the
derivation structure identifies choice points at which advice is called for, and shows how
the appropriate advice can effect drastic improvements in the search space and the quality
of the final product. Creating and retaining a record of the derivation structure also
makes us better able to adapt to changing task descriptions and environments—we can
develop versions of the problem solver that are specialized to the particular task at hand.

Advice might be abstract and domain-independent (work on shorter goals first) or
domain-specific (schedule busier people first; assign most constrained types first).
Advice can express assistance in problem solving (delete goals that are subsumed by
others.) or preferences between solutions (prefer to have meetings end early; prefer

shorter business trips; prefer to use less
fuel.)

We begin (see Figure 1) with a
specification of a problem solver and a
derivation within Planware of a general-
purpose problem solver that meets that
specification. We then apply the
problem solver to a particular subject
domain theory. The result is a problem
solver specialized to the domain. There
is no expectation at this point that this
problem solver will be efficient. The
general problem solver has been
implemented without any knowledge of
the intended application.

At each stage of the derivation, the
system or implementer has made
choices. Having access to those choices
gives us the possibility of changing
them. In general, a choice corresponds
to choosing an element from a set. We
may choose an implementation for a

Figure 1: The Derivation Structure

General
Solver
(Declarative)

Inference
System
(Declarative)

Resolution
Refutation
System
(Declarative)

Meeting
Scheduling
Problem
(Declarative)

Theorem
Prover
(Procedural)

Resolution
Theorem
Prover
(Procedural)

Meeting
Scheduler
(Procedural)

3

data structure from a variety of possible implementations; we may choose the place to
insert a task in an agenda of tasks; we may choose a subformula from the set of
subformulas of a given formula. Each choice represents a decision that can be altered,
giving possibly radical alterations of the search space. The choice points indicate places
at which a system can ask for advice from a knowledgeable consultant.

There is a virtue in having access to the many levels in the derivation of the problem
solver. For instance, while the highest level may be declarative, advice about what to do
first is often at a procedural level, in which actions are taken. Domain-independent
advice will be at an abstract level, while domain-specific advice will necessarily be at a
concrete level.

While there are many possible problem solvers, in our experiments we have looked at
systems for using logical inference as a problem solver. The methods are entirely
general. Indeed, the design of Respect allows us to alter that choice and examine other
problem-solving structures when they are more appropriate for a particular subject
domain. Our intention is to incorporate these ideas into a version of the software-
development environment Specware [Kestrel].

The specifications on the left in Figure 1 are declarative—they indicate what is to be
done without indicating how. The other specifications are procedural—they indicate
what actions are to be performed, but do not say why. The entire derivation structure
expresses both the why and the how.

The higher-level specifications are more abstract, while the lower-level ones are more
concrete. While the top specification just talks about what it means to solve a problem,
the second level talks about theorem proving, the third level to resolution theorem
proving, and the lowest level is specific to a particular application, meeting scheduling.

While not all the links in the structure have been implemented, we have done enough to
suggest the value of exploring this approach further. We have shown that choice points
in the structure indicate where advice can be accepted and that advice can have a
dramatic difference in both the quality of the solution and the time spent in finding it.
We will focus on particular aspects of the derivation structure.

4

Detailed Discussion of the Derivation Structure:
Inference
In this section we spell out some of the details of some of the specifications involved in
the derivation of a planning system.

In Appendix 1: Generic Declarative Refutation Theorem Prover we see the specification
for an inference system that is independent of the particular inference rules to be applied;
to implement this system, we must select an inference rule. Hence advice such as “use
resolution” or “use rewriting” would be meaningful. On the other hand, because it is
declarative, it would not be meaning to give the advice “treat short sentences before long
sentences” at this level—that is procedural advice.

In Appendix 2: Declarative Resolution Theorem Prover, the inference rule has been
specialized to binary resolution. For these experiments this was done by hand, but
ultimately it would be carried out within Planware. Also, while the present specification
is for propositional logic, it could be converted to first-order logic by the introduction of
substitution arguments and invocation of unification.

While the previous theorem prover was declarative, the next (Appendix 3: Procedural
Resolution Theorem Prover) is an actual MetaSlang procedure. At this level, we can
express strategic advice, such as stating which sentences to apply the resolution rule to
first. Because this level is still domain-independent, we cannot yet specify domain-
specific advice. In the next section, we see how knowing the subject domain allows us
to express such advice.

5

Meeting-Scheduling Theories

To experiment with the impact of advice and learning on particular subject domains, we
have developed declarative and procedural versions of particular domain theories,
including meeting scheduling and type inference. While ultimately we will develop a
single theory that will allow us to specify a variety of scheduling problems, for the
purpose of these experiments we have developed theories to specify particular problems.
While ultimately we will use the theorem prover derived in the previous section, to start
off the bootstrap process we have used the theorem prover SNARK that is built into
Specware. Scheduling has been one of the more successful applications of the Specware
family of problem solvers [Smith et al.]

In Appendix 4: Declarative Specification of a Simple Meeting-Scheduling Problem, we
specify a simple meeting-scheduling problem. This was an early experiment in different
representations of the domain. In this problem, there are three participants, Art, Bob, and
Carol, who are busy at three times, A, B, and C, respectively. While in later problems we
deal with real time intervals, at this stage we regard times as abstract. To say that Art is
free at Time B, we say

 Art(TimeB),

and so forth.

To schedule a meeting between Bob and Carol, we say

 ex(time1 : Time)
 Bob(time1) & Carol(time1).

In other words, we prove the existence of a time time1 at which both Bob and Carol are
free. During the proof, the variable time1 will be replaced by a concrete time TimeA,
which represents the only time at which Bob and Carol are free. This solution is
extracted from the proof by the theorem prover. Solution was essentially instantaneous.

While declarative specifications resemble logic programs superficially, in fact they are
quite different. A logic program represents a procedure in logical notation. A declarative
specification is a simple statement of facts with no order of execution or other procedural
information implied.

In Appendix 5: Procedural Meeting-Scheduling Theory, we give a MetaSlang program
that represents a meeting-scheduling procedure. Eventually this would be developed by
specializing the procedural version of a problem solver, such as the binary resolution
theorem prover, to a declarative statement of the meeting-scheduling theory.

6

In Appendix 6: Two-Meeting Scheduling Problem, we deal with a problem in which two
meetings had to be scheduled and one of the participants was more busy than the other
two. The intention was to show that the advice to schedule the busiest participant first
would lead to more efficient scheduling. However, the solution of the problem, with or
without advice, was also instantaneous.

In Appendix 7: Scheduling with Space, we introduce space as well as time—to schedule a
meeting, one must find a room as well as a time. This requires a change in
representation. We introduce two predicate symbols, FreePerson and FreeRoom.
We deal with two distinct times, Morning and Afternoon, and two rooms,
LightRoom and DarkRoom. To state that Carol is free in the afternoon, we write

 FreePerson(Carol, Afternoon).

To state that the light room is free in the morning, we say

 FreeRoom(LightRoom, Morning) .

To state a problem of scheduling two meetings, we say

 ex(time1 : Time, time2 : Time, room1 : Room, room2 : Room,
 schedule : Time * Room * Time * Room)
 FreePerson(Art, time1) & FreePerson(Bob, time1) &
 FreeRoom(room1, time1) &
 FreePerson(Bob, time2) & FreePerson(Carol, time2) &
 FreeRoom(room2, time2) &
 ~(time1 = time2) &
 schedule = (time1, room1, time2, room2).

In other words, we want to find a time time1 at which Art, Bob, and a room room1
are all free, and another time time2 at which Bob, Carol and a room room2 are all
free; if we succeed, a successful schedule is to have the first meeting be at time1 in
room1 and the second meeting be at time2 in room2.

All of the above problems were too simple to be useful in experimenting with the effects
of advice. In the next problem (Appendix 8: Advice about Constraint Ordering), we
expanded the number of participants and rooms, in an attempt to find a problem that
would benefit from advice. We posited that there are nine participants, eight times, and
eleven rooms. While most people and rooms are free at all times, Bob and the dark room
are only free at Time 5. We are required simply to find a time and room at which all nine
are available.

Because Bob is the busiest person and the dark room is the busiest room, our expectation
was that the theorem prover would find a solution more quickly if it was given the advice
to schedule these most constrained resources first. We say this by specifying, in effect
that Bob » Art, that DarkRoom » LightRoom, etc. We experimented with giving this

7

advice, giving a perversely bad ordering in which the most constrained resources were
scheduled last, and using no ordering strategy at all.

Somewhat to our surprise, the theorem prover behaved equally well with the good advice
and with the bad advice, and slightly worse without an ordering strategy.

The explanation was that giving any ordering eliminates redundancy, because it doesn’t
attempt to handle the same set of constraints in different orders. General-purpose
theorem-proving strategies, which are built into the theorem prover, made the domain-
specific advice we used redundant. The most important of these strategies here is to
favor shorter clauses over longer ones. In particular, unit clauses, such as the
descriptions of the free times of people and rooms, are handled immediately. For the
meeting-scheduling problem, the clause in which Bob is scheduled to meet at Time 5 is
shorter than the clauses in which Bob is scheduled to meet at other times, since the
constraint that he be free at Time 5 is handled immediately by resolution with a unit
clause.

While in the current implementation the advice to do short clauses first is built in, when
we derive a theorem prover from an abstract specification we expect to be able to accept
advice that suggests handling shorter clauses first.

In our previous examples, ordering advice told the problem solver what to attempt first.
But there is another kind of ordering advice, which expresses which kinds of solutions
are to be preferred. This might better be regarded as part of the specification, but it does
not constitute a hard restriction on the solution; rather, it states that if two solutions are
possible, one of them might be preferred to the other. For this reason, such preferences
are sometimes known as soft constraints.

We have experimented with a domain-independent way of dealing with such problems.
We first ignore the preference advice and find a single solution to the problem. We then
search for additional solution, adding to the specification the condition that the new
solution be “better” than the original, where “better” means preferable in the sense
expressed by the advice. If we succeed, again, we seek a third solution that is “better”
than the second, and so on until either the set of solutions is exhausted or we exceed some
preset time limit.

In Appendix 9: Preference Advice, we consider a problem in which four different
meetings are to be scheduled, some but not all of which can be concurrent. While it is
perfectly permissible to have them scattered throughout the day, we state a preference
that all the meetings should be over as early as possible. With this preference advice, and
the above-mentioned method of invoking a theorem prover repeatedly to seek better and
better solutions, we find a solution in which the meetings are held as early as possible,
and with the greatest possible overlap.

8

While in the previous problem we dealt with advice about a preference in time (finishing
earlier is better), in the next problem (in Appendix 10: Opportunistic Meeting
Scheduling), we considered advice about a preference in distance.

We suppose that a meeting must be scheduled between Alice and Bob during the first ten
days of April. (This is the first problem in which we deal with concrete time intervals.)
Alice lives in San Francisco and Bob lives in New York. One solution is to have Alice
make a special trip to New York, Bob make a special trip to San Francisco, or both of
them make a special trip to a third location. However, we are told that Alice already has
a trip scheduled to Minneapolis, Minnesota, April 3–7, and Bob has a trip scheduled to
Saint Paul, Minnesota, April 5–9. These are overlapping time intervals; the theorem
prover used a built-in temporal reasoning procedure to detect this. Also, Minneapolis and
Saint Paul are within six miles of each other; to detect this, the theorem prover invokes an
external gazetteer (for finding their latitudes and longitudes) and an geographical
computation procedure (for finding the distance between those latitude/longitude pairs).
Consequently it proposes a better solution in which they meet in Minnesota during April
5–7.

Whereas learning is sometimes associated with inductive inference or statistics, in
Appendix 11: Learning in Meeting Scheduling, we treat learning as a way of responding
to a failed solution attempt to exhibit better performance in the future, in this case by
negotiating a restatement of the problem.

We start with an impossible problem, in which three distinct meetings must be scheduled
in two time-slots. Art, Bob, and Carol are free at Times 1 and 2 but busy at Time 3. The
theorem prover fails to find a solution.

However, if we examine the search space, we find that every branch ends with a two-
literal clause that requests that two of the participants be free at Time 3, e.g,

 FreePerson(Art, Time3) & FreePerson(Bob, Time3),
or
 FreePerson(Bob, Time3) & FreePerson(Carol, Time3).

Such conditions can be detected automatically via the abduction facility of the theorem
prover. This suggests that we relax the constraints of the problem so that two of the
participants are free at a third time.

9

Type-Inference Theory

While most of our experiments have been conducted in the domain of meeting
scheduling, it is intended that the techniques we explore be valuable across many
domains. For example, we have found then to be useful for type inference, the consistent
assignment of types to the symbols in an expression (see Appendix 12: Type-Inference
Theory). For instance, it is appropriate to offer advice to assign a type to the most
constrained symbol first. These results are of special interest because Specware itself
uses type inference, so any improvements will be immediately applicable.

Now we reproduce the diagram of the Introduction, indicating which appendices,
including content or advice, correspond to which components of the figure.

Figure 2: The Derivation Structure Revisited

General Solver
[declarative]
(apply rules until goal solved)

Inference System
[declarative]
Appendix 1
(define deductive closure:
 “use resolution”)

Theorem Prover
[procedural]
(defines “prove”)

Resolution Refutation System
[declarative]
Appendix 2
(define binary resolution:
“represent set as list”)

Meeting Scheduling Theories
[declarative]
several appendices
(define FreePerson, FreeRoom;
“schedule Bob before Art”;
“prefer meetings end early”)

Resolution Theorem Prover
[procedural]
Appendix 3
(define refute:
 “do short clauses first”)

Meeting Scheduler
[procedural]
Appendix 5
(define ScheduleGroupTime;
 define arbGroup;
“select busiest person from group”)

10

Related Work

[Weyhrauch] developed a formal metatheory for first-order logic and introduced a
“reflection principle,” a rule of inference that allowed conclusions about logic derived by
the metatheory to alter and improve the metatheory itself. His work was in the setting of
an interactive theorem prover.

[Meseguer] develops a metalogical framework for describing other logics. Huet and
Plotkin collect descriptions of logical frameworks. In this work, the emphasis is on
representing logical reasoning, rather than proof search or automated problem solving.

[Boyer] use a reflection principle similar to Weyhrauch’s in their automatic theorem
prover, so that a theorem about arithmetic expressions proved by the system can
accelerate the performance of the system itself when applied to arithmetic expressions.

[Apt] develops a theory of problem solvers in which resolution can be viewed as an
instance of a constraint problem solver.

[Ridge] derives a first-order-logic theorem prover from a soundness and completeness
proof for a system of first-order logic. This proof, and the extraction of the theorem
prover, constitutes a full derivation history for the theorem prover. The theorem prover
derived has no function symbols or equality and cannot extract answers from proofs, but
these are plausible extensions.

11

Discussion

This work is still in its early stages but it suggests that having access to the derivation
structure of a problem solver can allow us to effect radical improvements in its
performance. The choice points in the refinement are natural places to ask advice from a
consultant. Since the advice can alter the derivation, it can have a radical effect on the
performance of the problem solver in the selected subject domain. Advice can be
declarative (e.g., preferences over solutions) or procedural (e.g., do unit clauses first);
abstract (do short clauses first) or domain-specific (schedule the most constrained people
or resources first). Therefore it is crucial to have access to all levels of the derivation
structure.

There is also the possibility of improving the problem solving structure itself by
reasoning in problem-solving theories. Thus reasoning about type inference can result in
improvements in the type inference we use in reasoning. Reasoning about unification or
deduction can improve the unification and deduction mechanism. If we derive a
unification algorithm for a theory that is used in our derivation process, we can use that
algorithm to expedite future derivations.

Examination of the search space of sample problems can lead to alterations in the
problem solver or even renegotiation of the specifications for problems and the relaxation
of constraints. The ability to rerun the problem solver and revise the specification
provides a novel way of dealing with user advice on preferences. These results apply
across a variety of domains, including meeting scheduling, type inference, and logistics
planning.

12

Appendix 1: Generic Declarative Refutation Theorem
Prover

Here is the specification for a generic refutation theorem prover:

deduction_spec = spec

(* comment:
This is a declarative spec for a generic refutation theorem prover;
it computes the deductive closure of a set of sentences with respect
to a set of inference rules. For a refutation procedure we check
that the false sentence occurs in the closure.
 end comment *)

sort Sentence

sort SentenceSet = {s : Sentence | true}

op inSentenceSet : Sentence * SentenceSet -> Boolean

op subSentenceSet : SentenceSet * SentenceSet -> Boolean

sort Rule

sort RuleSet = {r : Rule | true}

op inRuleSet : Rule * RuleSet -> Boolean

op subRuleSet : RuleSet * RuleSet -> Boolean

op apply_rs : Rule * Sentence -> SentenceSet

op apply_Rs : RuleSet * Sentence -> SentenceSet

op apply_rS : Rule * SentenceSet -> SentenceSet

op apply_RS : RuleSet * SentenceSet -> SentenceSet

axiom definition_of_apply_RS is
 fa(R : RuleSet, S : SentenceSet, s : Sentence)
 (inSentenceSet(s, apply_RS(R, S)) <=>
 (ex(r : Rule)
 (inRuleSet(r, R) &
 inSentenceSet(s, apply_rS(r, S)))))

axiom monotonicity_of_RuleSet is
 fa(R1 : RuleSet, R2 : RuleSet, S : SentenceSet)
 subRuleSet(R1, R2) =>
 subSentenceSet(apply_RS(R1, S), apply_RS(R2, S))

axiom monotonicity_of_SentenceSet is
 fa(R : RuleSet, S1 : SentenceSet, S2 : SentenceSet)
 subSentenceSet(S1, S2) =>

13

 subSentenceSet(apply_RS(R, S1), apply_RS(R, S2))

op neg : Sentence -> Sentence

op implies : Sentence * Sentence -> Boolean

op conjunction : SentenceSet -> SentenceSet

op impliesSet : SentenceSet * SentenceSet -> Boolean

axiom definition_of_impliesSet is
 fa(S1 : SentenceSet, S2 : SentenceSet)
 (impliesSet(S1, S2) <=>
 (fa(s2 : Sentence)
 (inSentenceSet(s2, S2) =>
 (ex(S11 : SentenceSet)
 subSentenceSet(S11, S1) &
 implies(conjunction(S11), s2)))))

op closure : RuleSet * SentenceSet -> SentenceSet

axiom closure_is_implied is
 fa(R : RuleSet, S : SentenceSet)
 impliesSet(S, closure(R, S))

axiom closure_is_closed is
 fa(R : RuleSet, S : SentenceSet)
 apply_RS(R, closure(R, S)) = closure(R, S)

axiom closure_is_smallest is
 fa(R : RuleSet, S : SentenceSet, S1 : SentenceSet)
 (impliesSet(S, S1) &
 apply_RS(R, S1) = S1) =>
 subSentenceSet(closure(R, S), S1)

op prover : RuleSet * SentenceSet -> Option Boolean

op true_sentence : Sentence
op false_sentence : Sentence
op RuleSet0 : RuleSet

axiom completeness_of_prover is
 fa (S : SentenceSet)
 (implies(conjunction(S), false_sentence) =>
 restrict (prover(RuleSet0, S)))

axiom soundness_of_prover is
 fa(S : SentenceSet)
 (some(prover(RuleSet0, S)) =>
 implies(conjunction(S), false_sentence))
endspec

14

Appendix 2: Declarative Resolution Theorem Prover

Here is the declarative specification of a propositional resolution theorem prover.
Although developed manually, it will ultimately be developed as a refinement of the
previous specification.

theorem_prover_spec = spec

sort Sentence

op true_sentence : Sentence
op false_sentence : Sentence
op neg : Sentence -> Sentence

sort SentenceSet = {s : Sentence | true}

%op rule? : SentenceSet * Sentence -> Boolean

sort Rule = SentenceSet * Sentence -> Boolean

sort RuleSet = {r : Rule | true}

op apply_rS : Rule * SentenceSet * Sentence -> Boolean

op refute : SentenceSet * RuleSet -> Boolean

op add_S : Sentence * SentenceSet -> SentenceSet

axiom add_S_collapses is
 fa(s : Sentence, S : SentenceSet)
 add_S(s, add_S(s, S)) = add_S(s, S)

op empty_S : SentenceSet

op single_S : Sentence -> SentenceSet

op duo_S : Sentence * Sentence -> SentenceSet

axiom definition_of_single_S is
 fa(s : Sentence)
 single_S(s) = add_S(s, empty_S)

axiom definition_of_duo_S is
 fa(s1 : Sentence, s2 : Sentence)
 duo_S(s1, s2) = add_S(s1, single_S(s2))

op add_R : Rule * RuleSet -> RuleSet

axiom add_R_collapses is
 fa(s : Rule, S : RuleSet)
 add_R(s, add_R(s, S)) = add_R(s, S)

op empty_R : RuleSet

15

op single_R : Rule -> RuleSet

op duo_R : Rule * Rule -> RuleSet

axiom definition_of_single_R is
 fa(s : Rule)
 single_R(s) = add_R(s, empty_R)

axiom definition_of_duo_R is
 fa(s1 : Rule, s2 : Rule)
 duo_R(s1, s2) = add_R(s1, single_R(s2))

axiom add_R_collapses is
 fa(r : Rule, R : RuleSet)
 add_R(r, add_R(r, R)) = add_R(r, R)

axiom false_is_refuted is
 fa(S : SentenceSet, R : RuleSet)
 refute(add_S(false_sentence, S), R)

axiom apply_rule_to_refute is
 fa (S : SentenceSet, s : Sentence, R : RuleSet, r : Rule)
 apply_rS(r, S, s) &
 refute(add_S(s, S), add_R(r, R)) =>
 refute(S, add_R(r, R))

op binaryResolution : Rule

op Clause? : Sentence -> Boolean

sort Clause = {s : Sentence | Clause? s}

op Literal? : Clause -> Boolean

sort Literal = {c : Clause | Literal? c}

op disjunction : SentenceSet -> Sentence

axiom disjunction_of_true is
 fa (S : SentenceSet)
 disjunction(add_S(true_sentence, S)) = true_sentence

axiom disjunction_of_false is
 fa(S : SentenceSet)
 disjunction(add_S(false_sentence, S)) = disjunction(S)

conjecture disjunction_of_single_lemma is
 fa(s : Sentence)
 disjunction(single_S(s)) = s

conjecture disjunction_of_duo_false_lemma is
 fa(s : Sentence)
 disjunction(duo_S(s, false_sentence)) = s

axiom definition_of_binaryResolution is
 fa(P : Literal, C : Clause, D : Clause)
 apply_rS(binaryResolution,

16

 duo_S(disjunction(duo_S(neg(P), C)),
 disjunction(duo_S(P, D))),
 disjunction(duo_S(C, D)))

conjecture binaryResolution_test is
 fa(P : Literal)
 apply_rS(binaryResolution, duo_S(neg(P), P), false_sentence)

conjecture applyBinaryResolution_test is
 fa(P : Literal)
 apply_rS(binaryResolution, duo_S(neg(P), P), false_sentence)

conjecture refutation_test is
 fa(P : Literal)
 refute(duo_S(neg(P), P

17

Appendix 3: Procedural Resolution Theorem Prover

Here is the procedural version of the propositional resolution theorem prover—ultimately
it will be developed as a refinement of the declarative version.

Closure = spec
import /Library/Structures/Data/Sets/Polymorphic
op subset?: [a] Set a -> Set a -> Boolean
op closure: [a] (Set a -> Set a) -> Set a -> Set a
%% Should have subsort predicate that subset? s (f s)
def closure f s =
 let newS = f s in
 if subset? newS s then s
 else closure f newS

%% Incremental version
op closure1: [a] (Set a -> Set a) -> Set a -> Set a
def closure1 f s =
 closure (fn s -> union s (f s)) s

endspec

WTP = spec
import Closure
import /Library/Structures/Data/Sets/Polymorphic/AsLists

sort Sentence = | True
 | False
 | Var String
 | Neg Sentence
 | Conjunction SentenceSet
 | Disjunction SentenceSet

sort SentenceSet = Set Sentence

op Clause? : Sentence -> Boolean
def Clause? s =
 case s of
 | Disjunction _ -> true
 | True -> true
 | False -> true
 | _ -> false

sort Clause = {s : Sentence | Clause? s}
sort ClauseSet = Set Clause

op Literal? : Clause -> Boolean
def Literal? s =
 case s of
 | True -> true
 | False -> true
 | Var _ -> true

18

 | _ -> false

sort Literal = {c : Clause | Literal? c}

op makeConjunction: SentenceSet -> Sentence
def makeConjunction ss =
 if empty? ss
 then True
 else if member? ss False
 then False
 else Conjunction(delete ss True)

op makeDisjunction: SentenceSet -> Sentence
def makeDisjunction ss =
 let ss = simplifyDisSS ss in
 if empty? ss
 then False
 else if member? ss True
 then True
 else Disjunction ss

sort Rule = Clause * Clause -> ClauseSet

sort RuleSet = Set Rule

op binaryResolution : Rule
def binaryResolution(c1,c2) =
 case (c1,c2) of
 | (Disjunction s1,Disjunction s2) ->
 union (binaryResolution1 s1 s2) (binaryResolution1 s2 s1)
 | _ -> empty

op binaryResolution1: SentenceSet -> SentenceSet -> ClauseSet
def binaryResolution1 s1 s2 =
 fold (fn r -> fn e1 ->
 fold (fn r -> fn e2 ->
 case e2 of
 | Neg ne2 ->
 if e1 = ne2
 then insert r (makeDisjunction(union (delete s1 e1)
(delete s2 e2)))
 else r
 | _ -> r)
 r s2)
 empty s1

op simplifyDisSS: SentenceSet -> SentenceSet
def simplifyDisSS ss =
 fold (fn rss -> fn s ->
 let s = simplifyS s in
 case s of
 | False -> rss
 | Neg ns ->
 if member? rss ns
 then singleton(True)
 else insert rss s
 | _ ->

19

 let ns = Neg s in
 if member? rss ns
 then singleton(True)
 else insert rss s)
 empty ss

op simplifyS: Sentence -> Sentence
def simplifyS s =
 case s of
 | Neg ns ->
 (case simplifyS ns of
 | Neg nns -> nns
 | ns1 -> Neg ns1)
 | Conjunction ss -> makeConjunction(ss)
 | Disjunction ss -> makeDisjunction(simplifyDisSS ss)
 | _ -> s

op applyRuleSet: RuleSet -> ClauseSet -> ClauseSet
def applyRuleSet rs cs =
 fold (fn ncs -> fn rl ->
 fold (fn ncs -> fn cl1 ->
 fold (fn ncs -> fn cl2 ->
 union ncs (rl(cl1,cl2)))
 ncs cs)
 ncs cs)
 cs rs

op refute : ClauseSet * RuleSet -> Boolean
def refute(cs,rs) =
 member? (closure1 (applyRuleSet rs) cs) False

endspec

Examples = spec

import WTP

op listToSet: [a] List a -> Set a
def listToSet l =
 foldl (fn (e,s) -> insert s e) empty l

def binaryResolution_test =
 let P = Var "p" in
 binaryResolution(makeDisjunction(singleton(Neg(P))),
makeDisjunction(singleton P)) = singleton(False)

def binaryResolution_test2 =
 let Q = Var "q" in
 let R = Var "r" in
 let S = Var "s" in
 binaryResolution(makeDisjunction(listToSet[Neg S,Neg R]),
 makeDisjunction(listToSet[S,Q,R]))

def refute_test1 =
 let P = Var "p" in
 refute(listToSet
[makeDisjunction(singleton(Neg(P))),makeDisjunction(singleton P)],

20

 singleton(binaryResolution))

def refute_test2 =
 let P = Var "p" in
 let Q = Var "q" in
 let R = Var "r" in
 refute(listToSet[makeDisjunction(listToSet[Neg P,Q]),
 makeDisjunction(listToSet[Neg P,R]),
 makeDisjunction(singleton P),
 makeDisjunction(listToSet[Neg Q,Neg R])],
 singleton(binaryResolution))

def refute_test3 =
 let P = Var "p" in
 let Q = Var "q" in
 let R = Var "r" in
 refute(listToSet[makeDisjunction(listToSet[Neg P,Q]),
 makeDisjunction(listToSet[Neg P,R]),
 makeDisjunction(singleton P),
 makeDisjunction(listToSet[Neg Q,R])],
 singleton(binaryResolution))

def refute_test4 =
 let P = Var "p" in
 let Q = Var "q" in
 let R = Var "r" in
 let S = Var "s" in
 refute(listToSet[makeDisjunction(listToSet[Neg P,Neg R]),
 makeDisjunction(listToSet[Neg Q,Neg R]),
 makeDisjunction(singleton (P)),
 makeDisjunction(listToSet[Neg S,R]),
 makeDisjunction(listToSet[S,Q,R]),
 makeDisjunction(singleton(Neg Q))],
 singleton(binaryResolution))

endspec), add_R(binaryResolution, empty_R))

endspec

21

Appendix 4: Declarative Specification of a Simple
Meeting-Scheduling Problem

Our first experiments had to do with the impact of ordering advice on the performance of
the theorem prover. Our first problem simply tested the ability of the theorem prover to
solve scheduling problems without the benefit of special advice.

meeting_spec = spec

(* comment:
Art, Bob and Carol are free at all three available times
except for TimeA, TimeB, and TimeC, respectively. Each
pair of them needs to have a meeting.
 end comment *)

 sort Time

 op Art : Time -> Boolean
 op Bob : Time -> Boolean
 op Carol : Time -> Boolean

 op TimeA : Time
 op TimeB : Time
 op TimeC : Time

 axiom Art_Free_Time is
 Art(TimeB) & Art(TimeC)

 axiom Bob_Free_Time is
 Bob(TimeA) & Bob(TimeC)

 axiom Carol_Free_Time is
 Carol(TimeA) & Carol(TimeB)

 conjecture meetinga is
 ex(time : Time)
 Bob(time) & Carol(time)

 conjecture meetingb is
 ex(time : Time)
 Art(time) & Carol(time)

 conjecture meetingc is
 ex(time : Time)

22

 Art(time) & Bob(time)

endspec

There are three people, Art, Bob, and Carol, who are busy at Time A, Time B, and Time
C, respectively. We pose three independent scheduling problems in which each pair of
them is to meet. These are simple problems, which the theorem prover was able to solve
almost instantaneously (about .2 or .3 seconds, of which most of the time was spent
processing assertions added by the interface for numerical reasoning which were
extraneous to this problem).

23

Appendix 5: Procedural Meeting-Scheduling Theory

Ideally, this meeting scheduler would be obtained by specializing a procedural
specification of a theorem prover to a declarative theory of meeting scheduling. Steps
towards a declarative meeting-scheduling theory are outlined later in this section.

procedural_schedule = spec

 sort Person
 sort Time

 sort Appointment = Person * Time

 op noAppointment : Appointment

 sort Schedule = {a : Appointment}

 op noSchedule : Schedule

 op addAppointment : Person * Time * Schedule -> Schedule
 op removeAppointment : Person * Time * Schedule ->
Schedule

 sort Group = {p : Person}

 op emptyGroup? : Group -> Boolean

 op arbGroup : Group -> Person

 op restGroup : Group -> Group

 sort Org = {g : Group}

 op emptyOrg? : Org -> Boolean

 op arbOrg : Org -> Group

 op restOrg : Org -> Org

(* comment:
scheduleOrg schedules meetings for a class of groups so
that all persons in each group will have a meeting
together, with no others. It accepts two parameters: a

24

schedule of already agreed-on meetings, and a schedule of
people's free times.
 end-comment *)

 op scheduleOrg : Org * Schedule * Schedule -> Schedule
 op scheduleOneGroup : Group * Org * Schedule * Schedule ->
Schedule

(* comment:
if the organization, i.e., the class of groups is empty,
the meetin problem is already solved. Othewise. we select
one group arbitrarily to schedule a meeting for.
 end-comment *)

 def scheduleOrg(C : Org,
 oldSchedule : Schedule,
 freeSchedule : Schedule): Schedule =
 if emptyOrg?(C)
 then oldSchedule
 else scheduleOneGroup(arbOrg(C),restOrg(C),
oldSchedule, freeSchedule)

 op scheduleOnePerson :
 Person * Group * Org * Schedule * Schedule ->
 Schedule

(* comment:
To schedule meetings for a group, select an arbitrary
person from the group; schedule a meeting for that person;
then schedule meetings for the others.
 end comment *)

 def scheduleOneGroup (group1 : Group,
 otherGroups : Org,
 oldSchedule : Schedule,
 freeSchedule : Schedule): Schedule =
 if emptyGroup?(group1)
 then scheduleOrg(otherGroups, oldSchedule,
freeSchedule)
 else scheduleOnePerson(arbGroup(group1),
 restGroup(group1),
 otherGroups,
 oldSchedule,
 freeSchedule)

(* comment:

25

getAppointment finds an arbitrary appointment (or free
time) in a person's schedule, if any
 end comment *)

 op getAppointment : Person * Schedule -> Appointment

(* comment:
removeAppointment removes that appointment from the
schedule, if one was found; otherwise, it leaves the
schedule unchanged.

inSchedule checks to see if a person has an appointment (or
free time) at a given time.
end comment *)

 op inSchedule : Person * Time * Schedule -> Boolean

% time yields the time of a given appointment

 op time : Appointment -> Time

(* comment
scheduleOnePerson schedules a meeting for a single person.
It finds a free time for that person; if none exists, it
fails. It then attempts to schedule the rest of the group
to meet at that time.

If that fails, it attempts to reschedule a meeting for the
given person at some time other than the selected free
time. For this purpose,it removes that time from the
person's free time schedule.
 end comment *)

 def scheduleOnePerson
 (person1 : Person,
 restofGroup : Group,
 otherGroups : Org,
 oldSchedule : Schedule,
 freeSchedule : Schedule) : Schedule =
 let appointment = getAppointment(person1, freeSchedule)
in
 if ~(appointment = noAppointment)
 then let time1 = time(appointment) in
 let newFreeSchedule =
 removeAppointment(person1, time1, freeSchedule)
in
 let newSchedule = scheduleGroupTime(

26

 time1,
 restofGroup,
 otherGroups,
 addAppointment(person1, time1, oldSchedule),
 newFreeSchedule) in
 if ~(newSchedule = noSchedule)
 then scheduleOrg(otherGroups, newSchedule,
newFreeSchedule)
 else scheduleOnePerson
 (person1,
 restofGroup,
 otherGroups,
 oldSchedule,
 newFreeSchedule)

 else noSchedule

 op scheduleGroupTime :
 Time * Group * Org * Schedule * Schedule -> Schedule

(* comment:
scheduleGroupTime attempts to find a schedule in which an
entire group will meet at a given time. If the group is
empty, it goes on to schedule the other groups. Otherwise,
it selects an arbitrary person from that group, and checks
to see if that person is free at the given time. If not,
it fails. Otherwise, it continues by scheduling the rest
of the group at the given time.
 end comment *)

 def scheduleGroupTime(time1 : Time,
 group1 : Group,
 otherGroups : Org,
 oldSchedule : Schedule,
 freeSchedule : Schedule) : Schedule =

 if emptyGroup?(group1)
 then scheduleOrg(otherGroups, oldSchedule, freeSchedule)
 else let person1 = arbGroup(group1) in
 if inSchedule(person1, time1, freeSchedule)
 then scheduleGroupTime
 (time1,
 restGroup(group1),
 otherGroups,
 addAppointment(person1, time1, oldSchedule),
 removeAppointment(person1, time1, freeSchedule))
 else noSchedule

27

endspec

28

Appendix 6: Two-Meeting Scheduling Problem

In the next problem we tried to introduce an asymmetry by having one of the participants,
Bob, have more free time than the other two. We pose a single problem in which two
distinct meetings are to be scheduled, between Bob and his two colleagues.

two_meeting_spec = spec

(* comment:
Art is free only at TimeA; Carol is free only at TimeB; Bob
is free both times. They need to have two meetings, one
between Art and Bob, the other between Bob and Carol.
 end comment *)

 sort Time

 op Art : Time -> Boolean
 op Bob : Time -> Boolean
 op Carol : Time -> Boolean

 op TimeA : Time
 op TimeB : Time

 axiom Times_Distinct is
 ~(TimeA = TimeB)

 axiom Art_Free_Time is
 Art(TimeA)

 axiom Bob_Free_Time is
 Bob(TimeA) & Bob(TimeB)

 axiom Carol_Free_Time is
 Carol(TimeB)

 conjecture two_meetings is
 ex(time1 : Time, time2 : Time)
 Art(time1) & Bob(time1) & Bob(time2) & Carol(time2) &
~(time1 = time2)

endspec

29

Again this problem was too simple to pose much difficulty to the theorem prover; it was
solved almost instantaneously.

30

Appendix 7: Scheduling with Space

We next introduced the element of scheduling space as well as time. We assume there
are two rooms, one of which is free only in the morning, the other in the afternoon. The
scheduler is to find both times and rooms for two meetings.

meeting_room_spec = spec

(* comment:
Art is free only in the morning; Carol is free only in the
afternoon; Bob is free both times. There are two meeting
rooms. The light room is free only in the morning; the
dark room is free only in the afternoon. We need to
schedule two meetings, one for Art and Bob and another for
Bob and Carol. The schedule is to provide room
assignments.
 end comment *)

 sort Person
 sort Room
 sort Time

 op Art : Person
 op Bob : Person
 op Carol : Person

 op DarkRoom : Room
 op LightRoom : Room

 op Morning : Time
 op Afternoon : Time

 op FreePerson : Person * Time -> Boolean
 op FreeRoom : Room * Time -> Boolean

 axiom Times_Distinct is
 ~(Morning = Afternoon)

 axiom Rooms_Distinct is
 ~(DarkRoom = LightRoom)

 axiom Art_Free_Time is
 FreePerson(Art, Morning)

 axiom Bob_Free_Time is

31

 FreePerson(Bob, Morning) & FreePerson(Bob, Afternoon)

 axiom Carol_Free_Time is

 axiom LightRoom_Free_Time is
 FreeRoom(LightRoom, Morning)

 axiom DarkRoom_Free_Time is
 FreeRoom(DarkRoom, Afternoon)

 conjecture two_meeting_rooms is
 ex(time1 : Time, time2 : Time, room1 : Room, room2 :
Room,
 schedule : Time * Room * Time * Room)
 FreePerson(Art, time1) & FreePerson(Bob, time1) &
 FreeRoom(room1, time1) &
 FreePerson(Bob, time2) & FreePerson(Carol, time2) &
 FreeRoom(room2, time2) &
 ~(time1 = time2) &
 schedule = (time1, room1, time2, room2)
endspec

32

Appendix 8: Advice about Constraint Ordering

All the above problems were so simple that they were not useful in experimenting with
the effects of advice. In our next problem we attempted to require a meeting to be
scheduled for many participants and rooms.

ordered_hard_meeting_room_spec = spec

(* comment:
There are nine people, eight times, and eleven rooms. All
people and rooms are available at all times, except Bob and
the dark room are available only at 5. It is necessary to
schedule a time and room for a single meeting with
everybody. It was hypothesized that an ordering that
scheduled Bob and the dark room first would dominate other
strategies.
 end comment *)

 sort Person
 sort Room
 sort Time

 op Art : Person
 op Bob : Person
 op Carol : Person
 op Don : Person
 op Ed : Person
 op Frank : Person
 op George : Person
 op Harry : Person
 op Ivy : Person

 op DarkRoom : Room
 op LightRoom : Room
 op RedRoom : Room
 op OrangeRoom : Room
 op YellowRoom : Room
 op GreenRoom : Room
 op BlueRoom : Room
 op IndigoRoom : Room
 op VioletRoom : Room
 op BlackRoom : Room
 op WhiteRoom : Room

33

 op Time1 : Time
 op Time2 : Time
 op Time3 : Time
 op Time4 : Time
 op Time5 : Time
 op Time6 : Time
 op Time7 : Time
 op Time8 : Time

 op FreePerson : Person * Time -> Boolean
 op FreeRoom : Room * Time -> Boolean

 axiom Art_Free_Time is
 FreePerson(Art, Time1) &
 FreePerson(Art, Time2) &
 FreePerson(Art, Time3) &
 FreePerson(Art, Time4) &
 FreePerson(Art, Time5) &
 FreePerson(Art, Time6) &
 FreePerson(Art, Time7) &
 FreePerson(Art, Time8)

 axiom Bob_Free_Time is
 FreePerson(Bob, Time5)

 axiom Carol_Free_Time is
 FreePerson(Carol, Time1) &
 FreePerson(Carol, Time2) &
 FreePerson(Carol, Time3) &
 FreePerson(Carol, Time4) &
 FreePerson(Carol, Time5) &
 FreePerson(Carol, Time6) &
 FreePerson(Carol, Time7) &
 FreePerson(Carol, Time8)

 axiom Don_Free_Time is
 FreePerson(Don, Time1) &
 FreePerson(Don, Time2) &
 FreePerson(Don, Time3) &
 FreePerson(Don, Time4) &
 FreePerson(Don, Time5) &
 FreePerson(Don, Time6) &
 FreePerson(Don, Time7) &
 FreePerson(Don, Time8)

 axiom Ed_Free_Time is

34

 FreePerson(Ed, Time1) &
 FreePerson(Ed, Time2) &
 FreePerson(Ed, Time3) &
 FreePerson(Ed, Time4) &
 FreePerson(Ed, Time5) &
 FreePerson(Ed, Time6) &
 FreePerson(Ed, Time7) &
 FreePerson(Ed, Time8)

 axiom Frank_Free_Time is
 FreePerson(Frank, Time1) &
 FreePerson(Frank, Time2) &
 FreePerson(Frank, Time3) &
 FreePerson(Frank, Time4) &
 FreePerson(Frank, Time5) &
 FreePerson(Frank, Time6) &
 FreePerson(Frank, Time7) &
 FreePerson(Frank, Time8)

 axiom George_Free_Time is
 FreePerson(George, Time1) &
 FreePerson(George, Time2) &
 FreePerson(George, Time3) &
 FreePerson(George, Time4) &
 FreePerson(George, Time5) &
 FreePerson(George, Time6) &
 FreePerson(George, Time7) &
 FreePerson(George, Time8)

 axiom Harry_Free_Time is
 FreePerson(Harry, Time1) &
 FreePerson(Harry, Time2) &
 FreePerson(Harry, Time3) &
 FreePerson(Harry, Time4) &
 FreePerson(Harry, Time5) &
 FreePerson(Harry, Time6) &
 FreePerson(Harry, Time7) &
 FreePerson(Harry, Time8)

 axiom Ivy_Free_Time is
 FreePerson(Ivy, Time1) &
 FreePerson(Ivy, Time2) &
 FreePerson(Ivy, Time3) &
 FreePerson(Ivy, Time4) &

35

 FreePerson(Ivy, Time5) &
 FreePerson(Ivy, Time6) &
 FreePerson(Ivy, Time7) &
 FreePerson(Ivy, Time8)

 axiom LightRoom_Free_Time is
 FreeRoom(LightRoom, Time1) &
 FreeRoom(LightRoom, Time2) &
 FreeRoom(LightRoom, Time3) &
 FreeRoom(LightRoom, Time4) &
% FreeRoom(LightRoom, Time5) &
 FreeRoom(LightRoom, Time6) &
 FreeRoom(LightRoom, Time7) &
 FreeRoom(LightRoom, Time8)

 axiom DarkRoom_Free_Time is
% FreeRoom(DarkRoom, Time1) &
% FreeRoom(DarkRoom, Time2) &
% FreeRoom(DarkRoom, Time3) &
% FreeRoom(DarkRoom, Time4) &
 FreeRoom(DarkRoom, Time5)% &
% FreeRoom(DarkRoom, Time6) &
% FreeRoom(DarkRoom, Time7) &
% FreeRoom(DarkRoom, Time8)

 axiom RedRoom_Free_Time is
 FreeRoom(RedRoom, Time1) &
 FreeRoom(RedRoom, Time2) &
 FreeRoom(RedRoom, Time3) &
 FreeRoom(RedRoom, Time4) &
% FreeRoom(RedRoom, Time5) &
 FreeRoom(RedRoom, Time6) &
 FreeRoom(RedRoom, Time7) &
 FreeRoom(RedRoom, Time8)

 axiom OrangeRoom_Free_Time is
 FreeRoom(OrangeRoom, Time1) &
 FreeRoom(OrangeRoom, Time2) &
 FreeRoom(OrangeRoom, Time3) &
 FreeRoom(OrangeRoom, Time4) &
% FreeRoom(OrangeRoom, Time5) &
 FreeRoom(OrangeRoom, Time6) &
 FreeRoom(OrangeRoom, Time7) &
 FreeRoom(OrangeRoom, Time8)

36

 axiom YellowRoom_Free_Time is
 FreeRoom(YellowRoom, Time1) &
 FreeRoom(YellowRoom, Time2) &
 FreeRoom(YellowRoom, Time3) &
 FreeRoom(YellowRoom, Time4) &
% FreeRoom(YellowRoom, Time5) &
 FreeRoom(YellowRoom, Time6) &
 FreeRoom(YellowRoom, Time7) &
 FreeRoom(YellowRoom, Time8)

 axiom GreenRoom_Free_Time is
 FreeRoom(GreenRoom, Time1) &
 FreeRoom(GreenRoom, Time2) &
 FreeRoom(GreenRoom, Time3) &
 FreeRoom(GreenRoom, Time4) &
% FreeRoom(GreenRoom, Time5) &
 FreeRoom(GreenRoom, Time6) &
 FreeRoom(GreenRoom, Time7) &
 FreeRoom(GreenRoom, Time8)

 axiom BlueRoom_Free_Time is
 FreeRoom(BlueRoom, Time1) &
 FreeRoom(BlueRoom, Time2) &
 FreeRoom(BlueRoom, Time3) &
 FreeRoom(BlueRoom, Time4) &
% FreeRoom(BlueRoom, Time5) &
 FreeRoom(BlueRoom, Time6) &
 FreeRoom(BlueRoom, Time7) &
 FreeRoom(BlueRoom, Time8)

 axiom IndigoRoom_Free_Time is
 FreeRoom(IndigoRoom, Time1) &
 FreeRoom(IndigoRoom, Time2) &
 FreeRoom(IndigoRoom, Time3) &
 FreeRoom(IndigoRoom, Time4) &
% FreeRoom(IndigoRoom, Time5) &
 FreeRoom(IndigoRoom, Time6) &
 FreeRoom(IndigoRoom, Time7) &
 FreeRoom(IndigoRoom, Time8)

 axiom VioletRoom_Free_Time is
 FreeRoom(VioletRoom, Time1) &
 FreeRoom(VioletRoom, Time2) &
 FreeRoom(VioletRoom, Time3) &
 FreeRoom(VioletRoom, Time4) &
% FreeRoom(VioletRoom, Time5) &
 FreeRoom(VioletRoom, Time6) &

37

 FreeRoom(VioletRoom, Time7) &
 FreeRoom(VioletRoom, Time8)

 conjecture ordered_hard_meeting_room is
 ex(time : Time, room : Room,
 schedule : Time * Room)
 FreePerson(Art, time) &
 FreePerson(Bob, time) &
 FreePerson(Carol, time) &
 FreePerson(Don, time) &
 FreePerson(Ed, time) &
 FreePerson(Frank, time) &
 FreePerson(George, time) &
 FreePerson(Harry, time) &
 FreePerson(Ivy, time) &
 FreeRoom(room, time) &
 schedule = (time, room)

 def meeting_prove_options =
 "
 (use-resolution t)
 (use-hyperresolution nil)
 (use-negative-hyperresolution nil)
 (use-paramodulation)
 (use-factoring)
 (use-literal-ordering-with-hyperresolution 'literal-
ordering-p)
 (use-literal-ordering-with-negative-hyperresolution
'literal-ordering-p)
 (use-literal-ordering-with-resolution 'literal-ordering-a)
 (use-literal-ordering-with-paramodulation 'literal-
ordering-p)
 (use-ac-connectives)
 (run-time-limit 10)
 (assert-supported nil)
 (use-code-for-numbers nil)
 (print-symbol-ordering)
 (print-final-rows)
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Art|)
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Carol|)
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Don|)
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Ed|)
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Frank|)
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|George|)
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Harry|)
 (declare-ordering-greaterp 'snark::|Bob| 'snark::|Ivy|)

38

 (declare-ordering-greaterp 'snark::|DarkRoom|
'snark::|LightRoom|)
 (declare-ordering-greaterp 'snark::|DarkRoom|
'snark::|RedRoom|)
 (declare-ordering-greaterp 'snark::|DarkRoom|
'snark::|OrangeRoom|)
 (declare-ordering-greaterp 'snark::|DarkRoom|
'snark::|YellowRoom|)
 (declare-ordering-greaterp 'snark::|DarkRoom|
'snark::|GreenRoom|)
 (declare-ordering-greaterp 'snark::|DarkRoom|
'snark::|BlueRoom|)
 (declare-ordering-greaterp 'snark::|DarkRoom|
'snark::|IndigoRoom|)
 (declare-ordering-greaterp 'snark::|DarkRoom|
'snark::|VioletRoom|)
 "

endspec

Note that for this problem Bob is the busiest person—he is free only at Time 5—and the
dark room is the busiest room—it is also free only at 5. The other people are available at
all times and the other rooms are available at all times other than Time 5.

Our expectation was that if we gave the theorem prover advice to schedule the most
constrained resources—Bob and the dark room—first, it would exhibit better
performance. We did separate runs in which the advice was absent or perversely bad—
we actually told it to schedule the most constrained resources last instead of first:

 (declare-ordering-greaterp 'snark::|Art| 'snark::|Bob|)
 (declare-ordering-greaterp 'snark::|Carol| 'snark::|Bob|)
 (declare-ordering-greaterp 'snark::|Don| 'snark::|Bob|)
 (declare-ordering-greaterp 'snark::|Ed| 'snark::|Bob|)
 (declare-ordering-greaterp 'snark::|Frank| 'snark::|Bob|)
 (declare-ordering-greaterp 'snark::|George| 'snark::|Bob|)
 (declare-ordering-greaterp 'snark::|Harry| 'snark::|Bob|)
 (declare-ordering-greaterp 'snark::|Ivy| 'snark::|Bob|)
 (declare-ordering-greaterp 'snark::|LightRoom|
'snark::|DarkRoom|)
 (declare-ordering-greaterp 'snark::|RedRoom|
'snark::|DarkRoom|)
 (declare-ordering-greaterp 'snark::|OrangeRoom|
'snark::|DarkRoom|)

39

 (declare-ordering-greaterp 'snark::|YellowRoom|
'snark::|DarkRoom|)
 (declare-ordering-greaterp 'snark::|GreenRoom|
'snark::|DarkRoom|)
 (declare-ordering-greaterp 'snark::|BlueRoom|
'snark::|DarkRoom|)
 (declare-ordering-greaterp 'snark::|IndigoRoom|
'snark::|DarkRoom|)
 (declare-ordering-greaterp 'snark::|VioletRoom|
'snark::|DarkRoom|)

40

Appendix 9: Preference Advice

Up to now, the advice we examined involved help in finding a solution. But there is
another kind of advice that involves expressing a preference for one solution over
another. This is different from a constraint, because we are assuming that either solution
is acceptable; but if both are possible, one of them is preferable to the other.

We experimented with one way of handling this sort of advice. We first ignore the
preference advice and find one solution to the problem. We then seek another solution to
the same problem, adding to the specification the condition that the new solution be
better than the old. Here “better” means preferable in the sense specified by the advice.
If a better solution is found, we then seek a third solution, where the third solution is
constrained to be better than the second, and so on until no more solutions exist or a time
limit is exceed. In this way, we continue to find better and better solutions until the
search space or time limit is exhausted.

preference_meeting_spec = spec

 sort Person
 sort Room
 sort Time = Integer

 op Alice : Person
 op Bob : Person
 op Carol : Person
 op Don : Person
 op Ellen : Person
 op Frank : Person

 op FreePerson : Person * Time -> Boolean

 axiom Alice_Free_Time is
 FreePerson(Alice, 1) &
 FreePerson(Alice, 2) &
 FreePerson(Alice, 3) &
 FreePerson(Alice, 4)

 axiom Bob_Free_Time is
 FreePerson(Bob, 1) &
 FreePerson(Bob, 2) &
 FreePerson(Bob, 3) &
 FreePerson(Bob, 4)

41

 axiom Carol_Free_Time is
 FreePerson(Carol, 1) &
 FreePerson(Carol, 2) &
 FreePerson(Carol, 3) &
 FreePerson(Carol, 4)

 axiom Don_Free_Time is
 FreePerson(Don, 1) &
 FreePerson(Don, 2) &
 FreePerson(Don, 3) &
 FreePerson(Don, 4)

 axiom Ellen_Free_Time is
 FreePerson(Ellen, 1) &
 FreePerson(Ellen, 2) &
 FreePerson(Ellen, 3) &
 FreePerson(Ellen, 4)

 axiom Frank_Free_Time is
 FreePerson(Frank, 1) &
 FreePerson(Frank, 2) &
 FreePerson(Frank, 3) &
 FreePerson(Frank, 4)

 conjecture preference_meeting is
 ex(time1 : Time, time2 : Time, time3 : Time, time4 :
Time,
 rating : Nat,
 schedule : Nat * Time * Time * Time * Time)
 FreePerson(Alice, time1) & FreePerson(Bob, time1) &
 FreePerson(Carol, time2) & FreePerson(Don, time2) &
 FreePerson(Ellen, time3) & FreePerson(Frank, time3) &

 FreePerson(Alice, time4) & FreePerson(Bob, time4) &
 FreePerson(Carol, time4) & FreePerson(Don, time4) &
 FreePerson(Ellen, time4) & FreePerson(Frank, time4) &
 ~(time4 = time1) & ~(time4 = time2) & ~(time4 =
time3) &
 rating = max(time1, max(time2, max(time3, time4))) &
 schedule = (rating, time1, time2, time3, time4)
endspec

In this problem there are three afternoon meetings to be scheduled between Alice and
Bob, Carol and Don, and Ellen and Frank, respectively, and a fourth meeting to be
scheduled between all of them together. Although the meetings could all be scheduled at
different times, we specify a preference that we would like the meetings to be over as

42

early as possible. While some schedules have the last meeting over at 4, with this advice
the theorem prover finds several acceptable plans but ultimately zeroes in on one in
which the three smaller meetings are all at the same time, 1, and the fourth meeting is
scheduled immediately after, with an optimal finishing time of 2.

43

Appendix 10: Opportunistic Meeting Scheduling

We have given advice about preferences with respect to time; we can also express
preferences with respect to distance. Also this is the first example in which we deal with
concrete dates rather than abstract times. This problem is expressed in the language of
SNARK, which is more primitive than Specware’s language, because we are using
SNARK temporal-reasoning features that are not yet made available through the
Specware interface.

(defun OPPORTUNISTIC-MEETING-PLAN ()
 (new-row-context)
 (declare-constant 'alice :sort 'person)
 (declare-constant 'bob :sort 'person)

 (assert '(travel-from-to
 alice
 (feature populated-place San-Francisco
 (feature 1st-order-division-countries
California United-States))
 (feature populated-place Minneapolis
 (feature 1st-order-division-countries
Minnesota United-States))
 (date-interval 2005 3 31 12 :until 2005 3 31 16)))

 (assert '(in
 alice
 (feature populated-place Minneapolis
 (feature 1st-order-division-countries
Minnesota United-States))
 (date-interval 2005 4 1 :until 2005 4 5)))

 (assert '(travel-from-to
 alice
 (feature populated-place Minneapolis
 (feature 1st-order-division-countries
Minnesota United-States))
 (feature populated-place San-Francisco
 (feature 1st-order-division-countries
California United-States))
 (date-interval 2005 4 6 5 :until 2005 4 6 7)))

 (assert '(travel-from-to
 bob
 (feature populated-place New-York

44

 (feature 1st-order-division-countries New-
York United-States))
 (feature populated-place Saint-Paul
 (feature 1st-order-division-countries
Minnesota United-States))
 (date-interval 2005 4 2 3 :until 2005 4 2 6)))

 (assert '(in bob
 (feature populated-place Saint-Paul (feature
1st-order-division-countries Minnesota United-States))
 (date-interval 2005 4 3 :until 2005 4 7)))

 (assert '(travel-from-to
 bob
 (feature populated-place Saint-Paul
 (feature 1st-order-division-countries
Minnesota United-States))
 (feature populated-place New-York
 (feature 1st-order-division-countries New-
York United-States))
 (date-interval 2005 4 8 9 :until 2005 4 8 15)))

 (prove '
 (could-meet-in-place alice bob (date-interval 2005 4 1
:until 2005 4 10) ?region1 ?region2)
 :answer '(Near ?region1 ?region2))

)

In this problem, Alice and Bob need to meet during the first ten days of April, but Alice
lives in San Francisco and Bob lives in New York. We give as advice the preference to
reduce travel distances. They could schedule a meeting in New York, San Francisco, or
someplace in between, which would mean a long trip for one or both of them. However,
examining the itineraries of Alice and Bob, the theorem prover sees that Alice has a trip
to Minneapolis, Minnesota, on April 3–7, and Bob has a trip to Saint Paul, on April 5–9.
Both these trips are within the desired time interval and their own time intervals overlap.
Furthermore, using procedural attachments to a gazetteer and geographical computation
software, the theorem prover is able to establish that Minneapolis and Saint Paul are only
6 miles apart, a much shorter distance than 3000 miles. Hence a meeting during the
intersection of the time intervals, April 5–7, in either of the Twin Cities, will be
preferable to a special trip.

45

Appendix 11: Learning in Meeting Scheduling

We next looked at a certain kind of learning in the context of meeting scheduling. We
imagine an impossible meeting-scheduling problem, in which all the participants are so
constrained that there is no possible solution:

impossible_meeting_spec = spec

(* comment:

Here is an example of an unsolvable meeting problem: Art,
Bob, and Carol are to have separate meetings between each
pair of them, but they are only free at Time1 and Time2.
The proof search generates a number of two-literal clauses,
each of which presents a satisfactory schedule if only two
of them were also free at Time3. In other words, abduction
could be used to suggest relaxations of contraints.
end comment *)

 sort Person
 sort Room
 sort Time

 op Art : Person
 op Bob : Person
 op Carol : Person

 op Time1 : Time
 op Time2 : Time
 op Time3 : Time

 op FreePerson : Person * Time -> Boolean

 axiom Times_Distinct is
 ~(Time1 = Time2) &
 ~(Time1 = Time3) &
 ~(Time2 = Time3)

 axiom Art_Free_Time is
 FreePerson(Art, Time1) &
 FreePerson(Art, Time2)

 axiom Bob_Free_Time is
 FreePerson(Bob, Time1) &
 FreePerson(Bob, Time2)

46

 axiom Carol_Free_Time is
 FreePerson(Carol, Time1) &
 FreePerson(Carol, Time2)

 conjecture impossible_meetings is
 ex(time1 : Time, time2 : Time, time3 : Time, schedule :
Time * Time * Time)
 FreePerson(Art, time1) & FreePerson(Bob, time1) &
 FreePerson(Bob, time2) & FreePerson(Carol, time2) &
~(time2 = time1) &
 FreePerson(Art, time3) & FreePerson(Carol, time3) &
~(time3 = time1) & ~(time3 = time2) &
 schedule = (time1, time2, time3)

endspec

Here we need to schedule distinct meetings between Art and Bob, between Bob and
Carol, and between Art and Carol, but all of them are free at only two times. If we
examine the failed proof, we find that all branches of the search space end in two-unit
clauses, in which we hope to achieve that two of the participants are free at the third time,
Time 3. These clauses are the negated forms of

 FreePerson(Art, Time3) & FreePerson(Bob, Time3),

 FreePerson(Bob, Time3) & FreePerson(Carol, Time3),

etc. This suggests that if the constraints of the problem were relaxed so that two of the
participants were free at Time 3, the problem would be solvable. Detecting such
conditions is carried out by the abduction facility of SNARK (or other theorem provers).

47

Appendix 12: Type-Inference Theory

Many of the same techniques that we apply to meeting scheduling can also be applied to
type inference, the coherent assignment of types to the symbols in an expression. The
purpose of looking at type checking is to ensure that the techniques we develop for
meeting scheduling do indeed have more general applicability. Also, Specware itself
uses type inference so any improved implementations we obtain will be of immediate
use.

Here is a procedural version of a type inference system.

AbstractSyntax =
spec
 type Expr = | Var String
 | IntConst Integer
 | RealConst(Integer * Nat)
 | Tuple(Expr * Expr)
 %| Tuple(List Expr)
 | Apply(Expr * Expr)
 type Type = | Integer
 | Real
 | Product(Type * Type)
 %| Product(List Type)
 | Arrow(Type * Type)
endspec

Typing =
spec
 import AbstractSyntax

 op TypeOf: Expr -> Type

 axiom typeOfIntConst is
 fa(i:Integer) TypeOf(IntConst i) = Integer

 axiom typeOfRealConst is
 fa(i:Integer,n:Nat) TypeOf(RealConst (i,n)) = Real

 axiom typeOfPlus is
 TypeOf(Var "+") =
Arrow(Product(Integer,Integer),Integer)
 or TypeOf(Var "+") = Arrow(Product(Real,Real),Real)

 axiom typeOfTuplePair is
 fa(e1: Expr,e2:Expr)

48

TypeOf(Tuple(e1,e2)) = Product(TypeOf e1,TypeOf e2)

 axiom typeOfApply is
 fa(e:Expr,ed:Expr,dom:Type,rng:Type)
 TypeOf e = Arrow(dom,rng) & TypeOf ed = dom
 => TypeOf(Apply(e,ed)) = rng

endspec

TypingExamples =
spec
 import Typing

 conjecture well_typed0 is
 ex(t:Type)
 TypeOf(IntConst 1) = t

 conjecture well_typed1 is
 ex(t:Type)
 TypeOf(Tuple(IntConst 1,IntConst 2)) = t

 conjecture well_typed2 is
 ex(t:Type)
 TypeOf(Apply(Var "+",Tuple(IntConst 1,IntConst 2))) = t

 conjecture badly_typed1 is
 ex(t:Type)
 TypeOf(Apply(Var "+",Tuple(IntConst 1,RealConst(2,1))))
= t

 conjecture badly_typed2 is
 ex(t:Type)
 TypeOf(Apply(Var "+",IntConst 1)) = t

endspec

Prove_well_typed0 =
 prove well_typed0 in TypingExamples
 answerVar t:Type

Prove_well_typed1 =
 prove well_typed1 in TypingExamples
 %answerVar t:Type

Prove_well_typed2 =
 prove well_typed2 in TypingExamples
 %answerVar t:Type

49

References

.[Apt] Apt, Krzysztof R. (2001). Theory and Practice of Logic Programming. Cambridge
University Press, New York, NY

[Boyer] Boyer, R. S. and Moore, J S. (1981) Metafunctions: proving them correct and
using them efficiently as new proof procedures.
In Boyer, R. S. and Moore, J S. (eds.), The Correctness Problem in Computer Science,
pp. 103--184. Academic Press.

[Huet] Gérard Huet and Gordon Plotkin, editors, Logical Frameworks. Cambridge
University Press, 1991.

[Kestrel] Kestrel Institute (2004). Specware. http://www.specware.org/

[Meseguer] José Meseguer. General logics. In H.-D. Ebbinghaus, editor, Logic
Colloquium '87, pages 275-329, Granada, Spain, July 1987. North-Holland.

[Ridge] Ridge, Tom (2004). A Mechanically Verified, Efficient, Sound and Complete
Theorem Prover For First Order Logic. in Project: Archive of Formal Proofs,
http://afp.sourceforge.net/entries/Verified-Prover.shtml

[Smith et al.] Marcel Becker, Limei Gilham, Douglas R. Smith, Planware II: Synthesis
of Schedulers for Complex Resource Systems, 2003.

[Weyhrauch] Weyhrauch, Richard (1980). Prolegomena to a Theory of Mechanized
Formal Reasoning. Artificial Intelligence, 13(1):133--176, 1980. 14.

